

Music Player

User Guide

Freakshow Studio

Page 2 of 12

Contents

	

1	
 Introduction ... 3	

2	
 Quickstart .. 4	

3	
 Setting up the MusicPlayer 5	

3.1	
 Adding the MusicPlayer .. 5	

3.2	
 Configuring the MusicPlayer .. 5	

3.3	
 Configuring the Audio Source .. 5	

3.4	
 Routing music to a mixer ... 6	

3.5	
 Controlling music volume ... 6	

4	
 Playlists and tracks .. 7	

4.1	
 Setting up playlists .. 7	

4.2	
 Setting up tracks .. 7	

5	
 Playing music ... 8	

5.1	
 Playing a playlist ... 8	

5.2	
 Stopping .. 8	

5.3	
 Pausing ... 8	

5.4	
 Skipping .. 9	

5.5	
 Seeking ... 9	

6	
 Events ... 10	

6.1	
 OnPlay ... 10	

6.2	
 OnStop .. 10	

6.3	
 OnPause .. 10	

6.4	
 OnUnpause .. 10	

6.5	
 OnTrackChange .. 10	

6.6	
 OnPlaylistChange .. 11	

7	
 Managing playlists at runtime 12	

7.1	
 Creating a Track at runtime .. 12	

7.2	
 Creating a Playlist at runtime .. 12	

7.3	
 Playing created playlists ... 12	

Page 3 of 12

1 Introduction

Music Player is a scripting plugin for Unity that allows for easy
playing of music in your projects.

It lets you configure playlists, for example for different parts of your
game or different levels, and easily change between these at
appropriate times. For example by having one playlist for the main
menu, and a different one in game.

It is also possible to create playlists at runtime, if your audio clips
are not available when you are editing or you are downloading the
music at runtime.

Playlists can be played in order or shuffled, and tracks can be
disabled. This can let users choose which tracks they want to hear.

Page 4 of 12

2 Quickstart

First, a Music Player should be added to the scene. This is done with
the menu option GameObject è Audio è Music Player. This will
create a GameObject named MusicPlayer in the scene, with an
AudioSource component and a MusicPlayer component.

It is possible to have several music players in a single scene, for
example if you want to use them as positional (3D) audio sources.
The most common scenario would however be to have just one, and
then route the output of the AudioSource component to an Audio
Mixer.

Once you have created a Music Player, you can set up playlists and
tracks in its inspector. Set the Play on Awake option if you want it
to automatically play the first playlist on start.

Once you have set up the playlists as you wish, use the public
methods on the Music Player to control playback. These are Play,
Stop, Pause, UnPause, Next and Previous.

Page 5 of 12

3 Setting up the MusicPlayer

To function, Music Player needs to be added to the scene. A scene
can contain more than one Music Player, and each instance needs
its own Audio Source component. Setting up the Audio Source is left
to the user as this allows setting it up as just a general music player
routed directly to a mixer, or as one or more music players
positioned in 3D space, or any other configuration you see fit.

3.1 Adding the MusicPlayer

To add a new Music Player to the current scene, select the menu
option GameObject è Audio è Music Player. This will create a
new GameObject named MusicPlayer in the scene, with an Audio
Source and a Music Player component.

You can also add the music player manually to a GameObject by
adding the script MusicPlayer.cs to it.

3.2 Configuring the MusicPlayer

The Music Player itself only has a few options, which are Play On
Awake, Volume, and History Length.

If Play On Awake is selected, the music player will automatically
start playing the first playlist when the scene is loaded/started.
Otherwise, you will need to call Play manually to start playing.

The Volume option sets the music volume, this directly controls the
volume of the Audio Source, and so it is important that you don't
try to adjust the volume on the Audio Source.

The History Length option sets the number of tracks it should be
possible to skip backwards. This is stored internally as a list of
integers, and therefore can be reasonably large without affecting
memory usage.

See the chapter Playlists and tracks for information on how to set
up playlists.

3.3 Configuring the Audio Source

When adding a new Music Player through the Game Object menu,
the Audio Source will be configured automatically for use as a
general music player intended to be routed directly to an audio
mixer.

Page 6 of 12

The Music Player does however support any configuration of the
audio source you'd like; the only thing to keep in mind is that it
should not be set to loop. If it is set to loop, it will never continue to
the next track automatically.

3.4 Routing music to a mixer

A common scenario is routing the music to an Audio Mixer in Unity.
There is nothing special with regard to this when using the Music
Player, but it's documented here for completeness.

The first thing you need to do is create an Audio Mixer asset, if you
haven't got one already. Then, in the Audio Mixer, add a new group
and name it something like Music.

Finally, all you need to do is set the Output of the Audio Source on
the Music Player to this Audio Mixer group.

You can then use this mixer group for setting the music volume,
adding ducking and effects and so on like you normally would.

3.5 Controlling music volume

If you are routing the output to a mixer, it is recommended that you
use the mixer for controlling the music volume.

Otherwise, it is important that you set the volume on the Music
Player itself, and not on the Audio Source, as the Music Player will
overwrite the volume on the Audio Source.

Page 7 of 12

4 Playlists and tracks

The Music Player will play playlists, which can contain any number
of tracks. Playlists can be played in order, or shuffled. Playlists can
be created and played at runtime, see the chapter Managing
playlists at runtime for more information about this. In most cases
however, it will make more sense to set up the playlists beforehand,
which is what we will cover here.

4.1 Setting up playlists

Playlists can be created and deleted in the Music Player inspector.
To create a new playlist, click the Add new playlist button. To delete
a playlist, click the '-' button.

Playlists can be moved up and down with the Up and Dn buttons.
The order of the playlists is not important, except the first playlist
which is the one that will be played on awake if Play on Awake is
set, or when calling Play for the first time without a playlist
parameter.

Use the foldout button on the playlist to reveal its options and
tracks. Here you can set the name of the playlist, and if it should be
shuffled when playing.

You can call Play with this name as a string to play a specific
playlist.

4.2 Setting up tracks

To add a new track, click the Add new track button. The tracks have
the same controls as the playlists, Up and Dn to move the track up
or down, and '-' to delete.

Use the foldout to set the track options. A track can be enabled or
disabled, when disabled it will not be played. If no tracks are
enabled in a playlist, the playlist will not play.

A name for the track can also be set here. This is what will be
returned by the property MusicPlayer.CurrentTrackName and the
tracks ToString method.

Finally, a track needs an associated Audio Clip for the actual music;
this can be any imported Audio Clip that Unity supports.

Page 8 of 12

5 Playing music

To interact with the Music Player, a reference to it is needed. You
get this in the same way as any other component reference in
Unity, normally assigned in the editor.

The music player lives in its own namespace, so to use it in code
you need to import it in any source code where you want to use it.
This is done with using FreakLib.Music in C# or with import
FreakLib.Music in JavaScript.

The full API is documented in the included API Reference manual.

5.1 Playing a playlist

There are three methods to play a playlist. Calling Play() without
arguments will begin playing the last active playlist, or the first one
in the list if the current playlist has not yet been set.

To play a playlist by its name, you call the method with a string
parameter, for example Play("name"). If a playlist with the given
name is not found, a UnityException will be thrown.

A playlist can also be played with a reference to a Playlist object.
Use Play(playlist) for this.

Note that calling Play will reset the history, even if called with the
same playlist.

5.2 Stopping

To stop playing, simply call the Stop method. After calling Stop, the
only way to start playing again is to call Play. As noted above, this
will reset the history. If you don't want this, use Pause instead,
optionally followed by seeking to the beginning of the track.

5.3 Pausing

To pause playing, call the Pause() method. If the player is currently
paused, this will do nothing.

You can also use the method PauseOrResume(), this will pause if
the player is currently playing, and will resume if called while the
player is paused. This will do nothing if the player has been stopped
instead of paused.

Page 9 of 12

5.4 Skipping

Skip to the next or previous track by calling the methods Next() and
Previous().

If there are no more enabled tracks in the playlist, calling Next()
will cause the music player to stop.

It is possible to skip backwards the number of tracks that are
defined by the History Length setting. When this limit is reached,
the music player will just continue playing the current track if
Previous() is called.

5.5 Seeking

There are two properties on the player that can be used to read or
control the current playtime, Playtime and PlaytimeNormalized.

Playtime will return the time since the start of the track in seconds
and PlaytimeNormalized will return a value between 0 and 1 where
0 is the start of the track, and 1 is the end.

If you want the length of the current track, use
CurrentTrack.Length.

Both Playtime and PlaytimeNormalized can be set to seek to a
position in the track.

Page 10 of 12

6 Events

The Music Player defines a number of Unity events that will be fired
when specific things occur. These are set like normal Unity events,
either in the inspector or the runtime, see the Unity documentation
for further information about Unity events.

It is possible to get a reference to the Music Player that is sending
the event in the callback, by having MusicPlayer as the single
parameter in the method declaration.

6.1 OnPlay

The OnPlay event will fire when the player starts playing, triggered
by Play On Awake or whenever a Play method is called.

6.2 OnStop

The OnStop event fires whenever the Stop method has been called,
or when the player needs to stop because for example no more
enabled tracks exist to play in a playlist.

6.3 OnPause

The OnPause event fires when the player is paused, by calling the
methods Pause or PauseOrResume.

6.4 OnUnpause

The OnUnpause event fires when the player resumes from pause,
when the methods UnPause or PauseOrResume are called. If the
player is not paused when one of these methods is called, the event
will not fire.

6.5 OnTrackChange

The OnTrackChange event will fire whenever the player changes
track, either when this is done automatically when the current track
ends, or when the Next or Previous methods are called. If there is
only one enabled track in a playlist, this event will still be fired even
if it will just re-start the same track.

This event will also fire when a playlist is first started.

Page 11 of 12

6.6 OnPlaylistChange

The OnPlaylistChange event will fire when the player changes
playlists, as a response to Play On Awake or the Play method being
called. However if Play is called with the same playlist as the current
one, this event will not fire.

Page 12 of 12

7 Managing playlists at runtime

In addition to setting up playlists and tracks in the inspector, they
can also be created at runtime.

This can be useful if you for example are downloading tracks at
runtime that you want to play, or if you want to allow users to
create their own playlists.

Remember to include the namespace FreakLib.Music in your code,
with import FreakLib.Music in JavaScript or using FreakLib.Music in
C#.

7.1 Creating a Track at runtime

Before creating a Playlist, it makes sense to first create a list of
tracks that you want in your playlist.

Tracks are created at runtime with a normal constructor. If you use
the constructor without parameters, you should take care to set the
clip and name variables.

The foldout variable is only used for the inspector, and the Plays
property is only used internally to track the number of plays of the
track for the shuffle function.

7.2 Creating a Playlist at runtime

A Playlist is created the same way as a track, with a normal
constructor. The name variable is the name of the playlist, and the
tracks should be set to a generic list of tracks, List<Track>. The
shuffle parameter determines if the playlist should be played in
order, or shuffled.

7.3 Playing created playlists

Once you have created a Playlist, you can play it directly in the
Music Player by passing it as an argument to the Play method.

You can also add it to the list of playlists in the player. This list is
exposed as the List<Playlist> property Playlists. To add the playlist
to this list, use the method MusicPlayer.Playlists.Add(). This will
allow you to play the playlist by its name, with the Play("name")
method.

